Investigating mechanical properties of B4C films produced by magnetron sputtering PVD

Yıldırım C., Kaçar E., Kısacık Ö., Eseroğlu C., Doyuran H.

Solid State Sciences, vol.146, 2023 (SCI-Expanded) identifier

  • Publication Type: Article / Article
  • Volume: 146
  • Publication Date: 2023
  • Doi Number: 10.1016/j.solidstatesciences.2023.107336
  • Journal Name: Solid State Sciences
  • Journal Indexes: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Academic Search Premier, PASCAL, Aerospace Database, Biotechnology Research Abstracts, Chemical Abstracts Core, Chimica, Communication Abstracts, Compendex, INSPEC, Metadex, Civil Engineering Abstracts
  • Keywords: Bias voltage, Boron carbide, Magnetron sputtering, Physical vapor deposition
  • Hakkari University Affiliated: No


Boron carbide thin films have recently garnered significant interest across various fields owing to their exceptional physical and chemical properties, such as high wear and corrosion resistance, as well as high hardness, being the third hardest material after diamond and cubic boron nitride. Different coating methods, including physical vapor deposition (PVD) and chemical vapor deposition (CVD), are used to produce these films. In this study, boron carbide thin films were deposited on single-crystal silicon substrates and high-speed steel (HSS) using magnetron sputtering at varying bias voltages (0, −100, and −200 V) in an argon atmosphere utilizing a B4C target. The process temperature, target power, and revolution speed were held constant at 150 °C, 1.3 kW, and 2 rpm, respectively. The mechanical, morphological, and microstructure properties of the deposited films were examined using FE-SEM, XRD, FTIR, Raman, XPS, Scratch test and Ferroxyl test. Nanoindentation test was conducted to evaluate the hardness values of the films. The experimental findings suggest that substrate bias significantly affects the mechanical, structural, and morphological properties of B4C coatings.