Forecasting Natural Gas Consumption in Hakkari Province Using Artificial Neural Network


Gökdemir M. E., Çetin T., Çiçek B.

IJANSER, cilt.9, sa.12, ss.599-605, 2025 (Hakemli Dergi)

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 9 Sayı: 12
  • Basım Tarihi: 2025
  • Dergi Adı: IJANSER
  • Sayfa Sayıları: ss.599-605
  • Hakkari Üniversitesi Adresli: Evet

Özet

Natural  gas  consumption  is  a  continuous  process  that  requires  an  exact  supply  to  prevent interruptions  in  domestic  use,  particularly  under  harsh  climatic  conditions.  This  study is  presentedto forecast  natural  gas  consumption  in  Hakkari  Province  using  the  Multiple  Linear  Regression  (MLR)  and Artificial  Neural  Network  (ANN)modelsfor  the  first  9  months  of  2023.  Training  data  consisted  of relative  humidity,  sunshine  duration,  temperature,  solar  intensity,  radiation,  and  subscriber  numbers  for the 2020-2022 period. The consumption was selected as the dependentoutputparameter, whiletheother parameters were independentinputvariables. Data analysis and training were performed using Python in the  Visual  Studio  Code  (VSCode)  environment.Data  processing  was conductedusing  the  Min-Max normalization method to ensure data consistency, and the 10-fold cross-validation technique was applied.A  fully  connected  feed-forward  neural  network  was  usedin  the  ANN  model,  whichconsisted  of  three hidden  layers  containing  32,  16,  and  8  neurons.LeakyReLU  was  preferred  as  the  activation  function  in the  hidden  layers to  providenon-linearity,  while  a  linear  activation  function  was implementedin  the output  layer  for  regression.The  Adaptive  Moment  Estimation  (Adam)  algorithm  was  selected  as  the optimizer to update the  network weights and minimize the loss function more efficiently. The R  square,RMSE and MAE values were found as 0.755,0.128, 0.104for the MLR model, and 0.943,0.06, 0.034for the  ANN  model,  respectively.The  results  indicatethat  the  ANN  model  showed betterperformancein terms of forecasting compared to the MLR model.